Local curvature estimates along the κ-LYZ flow

نویسندگان

چکیده

In this paper we prove a local curvature estimate for the $\kappa$-LYZ flow over K\"ahler manifolds introduced in [FGP1] and [LYZ]. particular, generalize long time existence of flow.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

κ-Curves: Interpolation at Local Maximum Curvature

We present a method for constructing almost-everywhere curvature-continuous, piecewise-quadratic curves that interpolate a list of control points and have local maxima of curvature only at the control points. Our premise is that salient features of the curve should occur only at control points to avoid the creation of features unintended by the artist. While many artists prefer to use interpola...

متن کامل

Local Curvature Bound in Ricci Flow

Theorem 2 Given n and v0 > 0, there exists ǫ0 > 0 depending only on n and v0 which has the following property. For any r0 > 0 and ǫ ∈ (0, ǫ0] suppose (Mn, g(t)) is a complete smooth solution to the Ricci flow on [0, (ǫr0) 2] with bounded sectional curvature, and assume that at t = 0 for some x0 ∈ M we have curvature bound |Rm |(x, 0) ≤ r 0 for all x ∈ Bg(0)(x0, r0), and volume lower bound Volg(...

متن کامل

Local Techniques for Mean Curvature Flow

of ann-dimensional manifold without boundary into Euclidean space. We say Af = x(Mn) moves by mean curvature if there exists a one-parameter family Xt = x( ·, t) of immersions with corresponding images J..!I1 = x 1(lvfn) satisfying d dtx(p,t) = -H(p,t)v(p,t) (1) x(p,O) = xo(P) for some initial data xo. Here H(p,t) and v(p,t) denote mean curvature and outer unit normal of the hypersurface M 1 at...

متن کامل

Bounding Sectional Curvature along a Kähler-ricci Flow

If a normalized Kähler-Ricci flow g(t), t ∈ [0,∞), on a compact Kähler manifold M , dimC M = n ≥ 3, with positive first Chern class satisfies g(t) ∈ 2πc1(M) and has curvature operator uniformly bounded in Ln-norm, the curvature operator will also be uniformly bounded along the flow. Consequently the flow will converge along a subsequence to a Kähler-Ricci soliton.

متن کامل

Sharp Estimates for Mean Curvature Flow of Graphs

A one-parameter family of smooth hypersurfaces {Mt} ⊂ R flows by mean curvature if zt = H(z) = ∆Mtz , (0.1) where z are coordinates on R and H = −Hn is the mean curvature vector. In this note, we prove sharp gradient and area estimates for graphs flowing by mean curvature. Thus, each Mt is assumed to be the graph of a function u(·, t). So, if z = (x, y) with x ∈ R, then Mt is given by y = u(x, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2021

ISSN: ['1879-1662', '0393-0440']

DOI: https://doi.org/10.1016/j.geomphys.2021.104162